SEDIQA: Sound Emitting Document Image Quality Assessment in a Reading Aid for the Visually Impaired

Author:

Courtney JaneORCID

Abstract

For visually impaired people (VIPs), the ability to convert text to sound can mean a new level of independence or the simple joy of a good book. With significant advances in optical character recognition (OCR) in recent years, a number of reading aids are appearing on the market. These reading aids convert images captured by a camera to text which can then be read aloud. However, all of these reading aids suffer from a key issue—the user must be able to visually target the text and capture an image of sufficient quality for the OCR algorithm to function—no small task for VIPs. In this work, a sound-emitting document image quality assessment metric (SEDIQA) is proposed which allows the user to hear the quality of the text image and automatically captures the best image for OCR accuracy. This work also includes testing of OCR performance against image degradations, to identify the most significant contributors to accuracy reduction. The proposed no-reference image quality assessor (NR-IQA) is validated alongside established NR-IQAs and this work includes insights into the performance of these NR-IQAs on document images. SEDIQA is found to consistently select the best image for OCR accuracy. The full system includes a document image enhancement technique which introduces improvements in OCR accuracy with an average increase of 22% and a maximum increase of 68%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference52 articles.

1. The Evaluation of Mobile Applications as Low Vision Aids: The Patient Perspective;Dockery;Invest. Ophthalmol. Vis. Sci.,2020

2. Commentary: An app a day keeps the eye doctor busy

3. A Systematic Review of Urban Navigation Systems for Visually Impaired People

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Document Image Quality Assessment: A Survey;ACM Computing Surveys;2023-09-14

2. Detection of Antibiotic Constituent in Aspergillus flavus Using Quantum Convolutional Neural Network;International Journal of E-Health and Medical Communications;2023-04-14

3. Restoring severely out-of-focus blurred text images with Deep Image Prior;Inverse Problems and Imaging;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3