A Novel Virtual-Structure Formation Control Design for Mobile Robots with Obstacle Avoidance

Author:

Chen Xuanlin,Huang FanghaoORCID,Zhang YougongORCID,Chen ZhengORCID,Liu ShuoORCID,Nie Yong,Tang Jianzhong,Zhu Shiqiang

Abstract

The cooperative motion of multiple mobile robots has attracted wide attention due to its advantages in military, marine and aerospace fields, and formation control has become a significant technology in the realization of these tasks. However, most of the existing formation control designs of mobile robots do not consider the practical obstacles in the environment, and the maintenance of both formation and trajectory tracking while confronting the obstacles is still a challenging issue. Therefore, in this paper, a virtual-structure-based formation control approach is designed with obstacle avoidance for a system with multiple mobile robots. The basic trajectory is generated for each robot in the group and parameterized to keep the group in formation. A trajectory generator is then established regarding the obstacles, where a potential function is designed to adjust the basic trajectory and replan the reference trajectory to achieve obstacle avoidance. Then, a novel design for the path parameter is proposed to improve the performance of the robot group when encountering obstacles. Finally, a tracking controller is designed to achieve good tracking performance for robots, and the guaranteed performance is achieved via the Lyapunov theorem. A comparative simulation with three sets is carried out, where an objective function Fobj is designed to evaluate the tracking performance in the presence of obstacles. Besides this, a real experiment is implemented to further verify the effectiveness. The simulation and experimental results verify the good formation and tracking performance of the proposed design for a system with multiple mobile robots with obstacle avoidance.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3