Consensus-Based Formation Control with Time Synchronization for a Decentralized Group of Mobile Robots

Author:

Siwek Michał1ORCID

Affiliation:

1. Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, Kaliskiego 2 Street, 00-908 Warsaw, Poland

Abstract

The development and study of an optimal control method for the problem of controlling the formation of a group of mobile robots is still a current and popular theme of work. However, there are few works that take into account the issues of time synchronization of units in a decentralized group. The motivation for taking up this topic was the possibility of improving the accuracy of the movement of a group of robots by including dynamic time synchronization in the control algorithm. The aim of this work was to develop a two-layer synchronous motion control system for a decentralized group of mobile robots. The system consists of a master layer and a sublayer. The sublayer of the control system performs the task of tracking the reference trajectory using a single robot with a kinematic and dynamic controller. In this layer, the input and output signals are linear and angular velocity. The master layer realizes the maintenance of the desired group formation and synchronization of robots during movement. Consensus tracking and virtual structure algorithms were used to implement this level of control. To verify the correctness of operation and evaluate the quality of control for the proposed proprietary approach, simulation studies were conducted in the MATLAB/Simulink environment, followed by laboratory tests using real robots under ROS. The developed system can successfully find application in transportation and logistics tasks in both civilian and military areas.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3