Machine Learning Approach to Predict the Performance of a Stratified Thermal Energy Storage Tank at a District Cooling Plant Using Sensor Data

Author:

Soomro Afzal AhmedORCID,Mokhtar Ainul Akmar,Salilew Waleligne Molla,Abdul Karim Zainal AmbriORCID,Abbasi AijazORCID,Lashari Najeebullah,Jameel Syed Muslim

Abstract

In the energy management of district cooling plants, the thermal energy storage tank is critical. As a result, it is essential to keep track of TES results. The performance of the TES has been measured using a variety of methodologies, both numerical and analytical. In this study, the performance of the TES tank in terms of thermocline thickness is predicted using an artificial neural network, support vector machine, and k-nearest neighbor, which has remained unexplored. One year of data was collected from a district cooling plant. Fourteen sensors were used to measure the temperature at different points. With engineering judgement, 263 rows of data were selected and used to develop the prediction models. A total of 70% of the data were used for training, whereas 30% were used for testing. K-fold cross-validation were used. Sensor temperature data was used as the model input, whereas thermocline thickness was used as the model output. The data were normalized, and in addition to this, moving average filter and median filter data smoothing techniques were applied while developing KNN and SVM prediction models to carry out a comparison. The hyperparameters for the three machine learning models were chosen at optimal condition, and the trial-and-error method was used to select the best hyperparameter value: based on this, the optimum architecture of ANN was 14-10-1, which gives the maximum R-Squared value, i.e., 0.9, and minimum mean square error. Finally, the prediction accuracy of three different techniques and results were compared, and the accuracy of ANN is 0.92%, SVM is 89%, and KNN is 96.3%, concluding that KNN has better performance than others.

Funder

Universiti Teknologi Petronas

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Thermal Energy Storage: Systems and Applications;Dincer,2002

2. A review of thermal energy storage technologies for seasonal loops

3. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

4. Artificial neural network modelling approach for assessment of stratified thermal energy storage tank;Majid;ARPN J. Eng. Appl. Sci.,2019

5. Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3