Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation

Author:

Kim Hyung-SeungORCID,Hong JunhoORCID,Choi In-Sun

Abstract

It has been mandated that 5% of the generation capacity of conventional fossil fuel power plants shall be used exclusively for frequency regulation (FR) purposes in South Korea. However, the rotational speed of generators cannot be controlled quickly, and thus the variation in the power generation for FR takes some time. Even during this short period of time, frequency fluctuations may occur, and the frequency may be out of range of its reference value. In order to overcome the limitations of the existing FR method, 374 MW (103 MWh) battery energy storage systems (BESSs) for FR have been installed and are in operation at 13 sites in South Korea. When designing the capacity of BESS for FR, three key factors, i.e., the deployment time, duration of delivery, and end of delivery, are considered. When these times can be reduced, the required capacity for BESS installation can be decreased, achieving the same operational effects with minimal investment in the facilities. However, because a BESS for FR (FR BESS) needs to be installed under a large capacity, providing a single output, a centralized control method is employed. The centralized control method has the advantage of being able to view and check the entire system at once, although in the case of FR BESS, a novel system design that can optimize the above three factors through a faster and more accurate control is required. Therefore, this paper proposes the implementation of a distributed autonomous control-based BESS for frequency regulation. For the proposed FR BESS, the central control system is responsible for the determination of external factors, e.g., power generation/demand forecasting; and the system is designed such that the optimal control method of renewable energy sources and BESS according to real-time frequency variations during practical operation is determined and operated using a distributed autonomous control method. Furthermore, this study was verified through the simulation that the proposed distributed autonomous control method conducts FR faster than an FR BESS with conventional centralized control, leading to an increase in the FR success rate, and a decrease in the deployment time required (e.g., 200 ms).

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3