Battery Storage Use in the Value Chain of Power Systems

Author:

Ratshitanga Mukovhe1ORCID,Ayeleso Ayokunle1ORCID,Krishnamurthy Senthil1ORCID,Rose Garrett1,Aminou Moussavou Anges Akim1ORCID,Adonis Marco1ORCID

Affiliation:

1. Department of Electrical, Electronics and Computer Engineering, Cape Peninsula University of Technology, Cape Town 7535, South Africa

Abstract

In recent years, energy challenges such as grid congestion and imbalances have emerged from conventional electric grids. Furthermore, the unpredictable nature of these systems poses many challenges in meeting various users’ demands. The Battery Energy Storage System is a potential key for grid instability with improved power quality. The present study investigates the global trend towards integrating battery technology as an energy storage system with renewable energy production and utility grid systems. An extensive review of battery systems such as Lithium-Ion, Lead–Acid, Zinc–Bromide, Nickel–Cadmium, Sodium–Sulphur, and the Vanadium redox flow battery is conducted. Furthermore, a comparative analysis of their working principles, control strategies, optimizations, and technical characteristics is presented. The review findings show that Lead–Acid, Lithium-Ion, Sodium-based, and flow redox batteries have seen increased breakthroughs in the energy storage market. Furthermore, the use of the BESS as an ancillary service and control technique enhances the performance of microgrids and utility grid systems. These control techniques provide potential solutions such as peak load shaving, the smoothing of photovoltaic ramp rates, voltage fluctuation reduction, a large grid, power supply backup, microgrids, renewable energy sources time shift, spinning reserve for industrial consumers, and frequency regulation. Conclusively, a cost summary of the various battery technologies is presented.

Funder

South African National Energy Development Institute

Publisher

MDPI AG

Reference125 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3