Abstract
In aerospace environments, high reliability and low power consumption of chips are essential. To greatly reduce power consumption, the latches of a chip need to enter the power down operation. In this operation, employing non-volatile (NV) latches can retain circuit states. Moreover, a latch can be hit by a radiative particle in the aerospace environment, which can cause a severe soft error in the worst case. This paper presents a NV-latch based on resistive random-access memories (ReRAMs) for NV and robust applications. The proposed NV-latch is radiation-hardened with low overhead and can restore values after power down operation. Simulation results demonstrate that the proposed NV-latch can completely provide radiation hardening capability against single-event upsets (SEUs) and can restore values after power down operation. The proposed NV-latch can reduce the number of transistors in the storage cells by 50% on average compared with the other similar solutions.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献