Conditions of Hydraulic Heterogeneity under Which Bayesian Estimation is More Reliable

Author:

Yang Hao-Qing,Chen Xiangyu,Zhang Lulu,Zhang Jie,Wei Xiao,Tang Chong

Abstract

Natural heterogeneity of soil hydraulic properties is significant for the design and construction of geotechnical structures, and should be adequately characterized. Accurate measurements of hydraulic properties remain a difficult job and do not always work well for further design and analysis. Field hydraulic monitoring data reflects the overall slope performance and provide a more representative estimation of in-situ soil hydraulic properties for back analysis. The objective of this study is to explore the conditions under which monitoring data can provide reliable estimates of hydraulic parameters. Different distributions of soil heterogeneity generate a total number of 500 sets of synesthetic monitoring data. Bayesian inversion with the integration of Karhunen-Loève (K-L) and polynomial chaos expansion (PCE) is chosen to estimate the spatially varied saturated coefficient of permeability ks. The results show that the method is accurate and reliable, with less than 3% percentage error and 0.08 coefficient of variation (COV) around the monitoring points. There are two characteristics of the best-estimated fields. First, the ranges of ks for best-estimated fields are much narrower than the worst estimated fields. Second, when the larger ks values are distributed in the unsaturated zone of slope crest, it will lead to the best estimation. It is suggested that monitoring data can provide a reliable estimation of heterogeneous ks when the ratio of ground surface flux to ks in the unsaturated zone of slope crest is less than 1/150. Small values of ks in the slope crest result in the response of pressure head far from the responses of homogenous ks in the unsaturated zone. This complex response of the pressure head further causes the ill identification of ks by Bayesian estimation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3