Abstract
High-speed and accurate simulations of landslide-generated tsunamis are of great importance for the understanding of generation and propagation of water waves and for prediction of these natural disasters. A three-dimensional numerical model, based on Reynolds-averaged Navier–Stokes equations, is developed to simulate the landslide-generated tsunami. Available experiment data is used to validate the numerical model and to investigate the scale effect of numerical model according to the Froude similarity criterion. Based on grid convergence index (GCI) analysis, fourteen cases are arranged to study the sensitivity of numerical results to mesh resolution. Results show that numerical results are more sensitive to mesh resolution in near field than that in the propagation field. Nonuniform meshes can be used to balance the computational efficiency and accuracy. A mesh generation strategy is proposed and validated, achieving an accurate prediction and nearly 22 times reduction of computational cost. Further, this strategy of mesh generation is applied to simulate the Laxiwa Reservoir landslide tsunami. The results of this study provide an important guide for the establishment of a numerical model of the real-world problem of landslide tsunami.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献