A Non-Hydrostatic Model for Simulating Weakly Dispersive Landslide-Generated Waves

Author:

Tarwidi Dede12ORCID,Pudjaprasetya Sri Redjeki1ORCID,Tjandra Sugih Sudharma3ORCID

Affiliation:

1. Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia

2. School of Computing, Telkom University, Jalan Telekomunikasi No. 1 Terusan Buah Batu, Bandung 40257, Indonesia

3. Industrial Engineering, Parahyangan Catholic University, Jalan Ciumbuleuit No. 94, Bandung 40141, Indonesia

Abstract

The aim of this study is to develop an efficient numerical scheme that is capable of simulating landslide-generated waves. The numerical scheme is based on the one-layer non-hydrostatic (NH-1L) model, a phase-solving model that can account for weakly dispersive waves. In this paper, the model is extended to include a time-varying solid bed. This NH-1L scheme is very efficient because, at each time step, only a tridiagonal Poisson pressure matrix needs to be solved. In this study, the capability of the NH-1L scheme to simulate landslide-generated waves is demonstrated by executing two types of landslide motion: constant speed and with acceleration and deceleration. Validation was performed using analytical solutions of the linear weakly dispersive (LWD) model, as well as experimental data. The NH-1L model was capable of describing the generation and propagation of water waves by a submarine landslide from relatively intermediate water to shallow water depths.

Funder

Telkom University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3