Analysis of the Slope Response to an Increase in Pore Water Pressure Using the Material Point Method

Author:

Troncone ,Conte ,Pugliese

Abstract

Traditional numerical methods, such as the finite element method or the finite difference method, are generally used to analyze the slope response in the pre-failure and failure stages. The post-failure phase is often ignored due to the unsuitability of these methods for dealing with problems involving large deformations. However, an adequate analysis of this latter stage and a reliable prediction of the landslide kinematics after failure are very useful for minimizing the risk of catastrophic damage. This is generally the case of the landslides triggered by an excess in pore water pressure, which are often characterized by high velocity and long run-out distance. In the present paper, the deformation processes occurring in an ideal slope owing to an increase in pore water pressure are analyzed using the material point method (MPM) that is a numerical technique capable of overcoming the limitations of the above-mentioned traditional methods. In particular, this study is aimed to investigate the influence of the main involved parameters on the development of a slip surface within the slope, and on the kinematics of the consequent landslide. The obtained results show that, among these parameters, the excess water pressure exerts the major influence on the slope response. A simple equation is also proposed for a preliminary evaluation of the run-out distance of the displaced soil mass.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference48 articles.

1. Flow-like mass movements in pyroclastic soils: remarks on the modelling of the triggering mechanism;Cascini;Italian Geotech. J.,2005

2. Run-out of landslides in brittle soils

3. Analysis of the Maierato landslide (Calabria, Southern Italy)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3