Ion Implantation Doping in Silicon Carbide and Gallium Nitride Electronic Devices

Author:

Roccaforte FabrizioORCID,Giannazzo FilippoORCID,Greco GiuseppeORCID

Abstract

Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are excellent materials for the next generation of high-power and high-frequency electronic devices. In fact, their wide band gap (>3 eV) and high critical electric field (>2 MV/cm) enable superior performances to be obtained with respect to the traditional silicon devices. Hence, today, a variety of diodes and transistors based on SiC and GaN are already available in the market. For the fabrication of these electronic devices, selective doping is required to create either n-type or p-type regions with different functionalities and at different doping levels (typically in the range 1016–1020 cm−3). In this context, due to the low diffusion coefficient of the typical dopant species in SiC, and to the relatively low decomposition temperature of GaN (about 900 °C), ion implantation is the only practical way to achieve selective doping in these materials. In this paper, the main issues related to ion implantation doping technology for SiC and GaN electronic devices are briefly reviewed. In particular, some specific literature case studies are illustrated to describe the impact of the ion implantation doping conditions (annealing temperature, electrical activation and doping profiles, surface morphology, creation of interface states, etc.) on the electrical parameters of power devices. Similarities and differences in the application of ion implantation doping technology in the two materials are highlighted in this paper.

Funder

Key Digital Technologies Joint Undertaking

Publisher

MDPI AG

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3