Growth of Thin AlN Films on Si Wafers by Reactive Magnetron Sputtering: Role of Processing Pressure, Magnetron Power and Nitrogen/Argon Gas Flow Ratio

Author:

Sandager Matilde Kammer,Kjelde Christian,Popok VladimirORCID

Abstract

AlN is a wide band gap semiconductor that is of growing industrial interest due to its piezoelectric properties, high breakdown voltage and thermal conductivity. Using magnetron sputtering to grow AlN thin films allows for high deposition rates and uniform coverage of large substrates. One can also produce films at low substrate temperatures, which is required for many production processes. However, current models are inadequate in predicting the resulting structure of a thin film when different sputter parameters are varied. In this work, the growth of wurtzite AlN thin films has been carried out on Si(111) substrates using reactive direct current magnetron sputtering. The influence of the processing pressure, magnetron power and N2/Ar ratio on the structure of the grown films has been analyzed by investigating crystallinity, residual film stress and surface morphology using X-ray diffraction, profilometry, atomic force microscopy and scanning electron microscopy. In every case, the films were found to exhibit c-axis orientation and tensile stress. It was found that high-quality AlN films can be achieved at an N2/Ar ratio of 50% and a low pressure of 0.2 Pa. High magnetron powers (900–1200 W) were necessary for achieving high deposition rates, but they led to larger film stress.

Funder

Innovation Fund Denmark

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3