Picture of the Favourable Immune Profile Induced by Anti-SARS-CoV-2 Vaccination

Author:

Lanuti Paola,Rossi ClaudiaORCID,Cicalini IlariaORCID,Pierdomenico Laura,Damiani VerenaORCID,Semeraro Daniela,Verrocchio Sara,Del Boccio PieroORCID,Evangelista AdeliaORCID,Sarra AnnalinaORCID,Zucchelli Mirco,Bologna Giuseppina,Simeone PasqualeORCID,Catitti Giulia,Di Marco Federica,Stefanetti Simone,Vespa SimoneORCID,Sinjari BrunaORCID,Bucci Ines,De Laurenzi Vincenzo,Di Battista TonioORCID,Stuppia Liborio,Pieragostino DamianaORCID

Abstract

COVID-19 pandemic has hit people’s health, economy, and society worldwide. Great confidence in returning to normality has been placed in the vaccination campaign. The knowledge of individual immune profiles and the time required to achieve immunological protection is crucial to choose the best vaccination strategy. We compared anti-S1 antibody levels produced over time by BNT162b2 and AZD1222 vaccines and evaluated the induction of antigen-specific T-cells. A total of 2569 anti-SARS-CoV-2 IgG determination on dried blood spot samples were carried out, firstly in a cohort of 1181 individuals at random time-points, and subsequently, in an independent cohort of 88 vaccinated subjects, up to the seventeenth week from the first dose administration. Spike-specific T-cells were analysed in seronegative subjects between the two doses. AZD1222 induced lower anti-S1 IgG levels as compared to BNT162b2. Moreover, 40% of AZD1222 vaccinated subjects and 3% of BNT162b2 individuals resulted in seronegative during all the time-points, between the two doses. All these subjects developed antigen-specific T cells, already after the first dose. These results suggest that this test represents an excellent tool for a wide sero-surveillance. Both vaccines induce a favourable immune profile guaranteeing efficacy against severe adverse effects of SARS-CoV-2 infection, already after the first dose administration.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3