Sample Size Analysis for Machine Learning Clinical Validation Studies

Author:

Goldenholz Daniel M.12ORCID,Sun Haoqi123,Ganglberger Wolfgang123ORCID,Westover M. Brandon123

Affiliation:

1. Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA

2. Department of Neurology, Harvard Medical School, Boston, MA 02215, USA

3. Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA

Abstract

Background: Before integrating new machine learning (ML) into clinical practice, algorithms must undergo validation. Validation studies require sample size estimates. Unlike hypothesis testing studies seeking a p-value, the goal of validating predictive models is obtaining estimates of model performance. There is no standard tool for determining sample size estimates for clinical validation studies for machine learning models. Methods: Our open-source method, Sample Size Analysis for Machine Learning (SSAML) was described and was tested in three previously published models: brain age to predict mortality (Cox Proportional Hazard), COVID hospitalization risk prediction (ordinal regression), and seizure risk forecasting (deep learning). Results: Minimum sample sizes were obtained in each dataset using standardized criteria. Discussion: SSAML provides a formal expectation of precision and accuracy at a desired confidence level. SSAML is open-source and agnostic to data type and ML model. It can be used for clinical validation studies of ML models.

Funder

NIH

Glenn Foundation for Medical Research and American Federation for Aging Research

American Academy of Sleep Medicine

Football Players Health Study (FPHS) at Harvard University

Department of Defense through a subcontract from Moberg ICU Solutions, Inc.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3