Potential suicide risk among the college student population: machine learning approaches for identifying predictors and different students’ risk profiles

Author:

Dagani JessicaORCID,Buizza ChiaraORCID,Ferrari ClarissaORCID,Ghilardi AlbertoORCID

Abstract

Abstract Background Suicide is one of the leading causes of death among young people and university students. Research has identified numerous socio-demographic, relational, and clinical factors as potential predictors of suicide risk, and machine learning techniques have emerged as promising ways to improve risk assessment. Objective This cross-sectional observational study aimed at identifying predictors and college student profiles associated with suicide risk through a machine learning approach. Methods A total of 3102 students were surveyed regarding potential suicide risk, socio-demographic characteristics, academic career, and physical/mental health and well-being. The classification tree technique and the multiple correspondence analysis were applied to define students’ profiles in terms of suicide risk and to detect the main predictors of such a risk. Results Among the participating students, 7% showed high potential suicide risk and 3.8% had a history of suicide attempts. Psychological distress and use of alcohol/substance were prominent predictors of suicide risk contributing to define the profile of high risk of suicide: students with significant psychological distress, and with medium/high-risk use of alcohol and psychoactive substances. Conversely, low psychological distress and low-risk use of alcohol and substances, together with religious practice, represented the profile of students with low risk of suicide. Conclusions Machine learning techniques could hold promise for assessing suicide risk in college students, potentially leading to the development of more effective prevention programs. These programs should address both risk and protective factors and be tailored to students’ needs and to the different categories of risk.

Funder

Department of Clinical and Experimental Sciences of the University of Brescia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3