Improving Shear Strength Prediction in Steel Fiber Reinforced Concrete Beams: Stacked Ensemble Machine Learning Modeling and Practical Applications

Author:

Albidah Abdulrahman S.1,Abbas Yassir M.1ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

Existing machine learning (ML) models often encounter challenges in accurately predicting the shear strength of steel fiber reinforced concrete (SFRC) beams, mainly due to a lack of generalization. This study introduces an advanced stacked ensemble ML architecture to overcome this limitation by utilizing a comprehensive data set of 394 experimental observations and a 20-feature matrix. The model exhibits exceptional performance with a mean absolute error of 0.391 and a correlation coefficient (R2) of 93.7%, and surpasses traditional ML algorithms. Furthermore, a sensitivity analysis of the developed model yields that shear strength is highly responsive to the shear span-to-effective depth ratio, with an increase from 1 to 4 resulting in a significant reduction (about 50%) in strength. Increasing the percentage of longitudinal steel from 1 to 2% leads to a 14.6% gain, whereas doubling its yield strength has a more modest 3.7% effect. Increasing the compressive strength of concrete from 25 to 50 MPa, notably increases the shear strength by 19.6%. Fiber length, diameter, and aspect ratio exhibit varying impacts, with shear strength most influenced by the fiber volume fraction, which leads to a peak enhancement of 30.7% at 2% fibrous volume; however, the tensile strength of fibers minimally affects the shear strength. Additionally, this research presents a simplified empirical model to predict the shear strength of SFRC beams based on the key determinants. This model employs the iterative Gauss–Newton algorithm, demonstrates reasonable predictive capability, and boasts an R2 of 83.3% and mean prediction-tested strengths of around 1.039. The practical implications of these findings are substantial for the construction industry as they enable a more accurate and reliable design of SFRC beams, optimize material usage, and potentially reduce construction costs as well as enhance structural safety.

Funder

King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3