Preparation and Characterization of Rutin–Loaded Zein–Carboxymethyl Starch Nanoparticles

Author:

Li Cuicui,Chen LongORCID,McClements David JulianORCID,Peng Xinwen,Qiu ChaoORCID,Long Jie,Ji Hangyan,Zhao Jianwei,Zhou Xing,Jin Zhengyu

Abstract

In this work, rutin (RT)–loaded zein–carboxymethyl starch (CMS) nanoparticles were successfully prepared by the antisolvent precipitation method. The effect of CMS on composite nanoparticles at different concentrations was studied. When the ratio of zein–RT–CMS was 10:1:30, the encapsulation efficiency (EE) was the highest, reaching 73.5%. At this ratio, the size of the composite nanoparticles was 196.47 nm, and the PDI was 0.13, showing excellent dispersibility. The results of fluorescence spectroscopy, FTIR, XRD, and CD showed that electrostatic interaction, hydrogen bonding, and hydrophobic interaction were the main driving forces for the formation of nanoparticles. It can be seen from the FE–SEM images that the zein–RT–CMS nanoparticles were spherical. With the increase in the CMS concentration, the particles gradually embedded in the cross–linked network of CMS (10:1:50). After RT was loaded on zein–CMS nanoparticles, the thermal stability and pH stability of RT were improved. The results showed that zein–CMS was an excellent encapsulation material for bioactive substances.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province - China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3