Microbial Diversity and Volatile Flavor Changes during Gayangju Fermentation, a Traditional Korean House Rice Wine

Author:

Song Young-Ran,Lim Byeong-Uk,Baik Sang-Ho

Abstract

Physicochemical changes in fermented alcoholic beverages are significantly related to microbial community development during fermentation. Due to its unusually long fermentation, Gayangju, a traditional Korean house rice wine fermented with nuruk as the traditional starter, gives rise to a strong yeast community and, therefore, a high ethanol concentration and different flavors. However, no detailed analysis has been examined. Changes in microbial community structure during Gayangju fermentation were examined using both culture-dependent and culture-independent methods. During fermentation, Saccharomyces cerevisiae and Saccharomycopsis fibuligera were dominant during all stages of the fermentation. In contrast, Candida parapsilosis, Hanseniaspora guilliermondii, Pichia anomala, Malassezia cuniculi and P. fermentans were identified as minor. P. anomala appeared after the second brewing and then remained constant. Among the 19 compounds identified in this study as order-active compounds, 2-methyl-1-butanol (isoamyl alcohol) was the major compound that increased during the long fermentation stage. Most of the odor-active compounds such as 2,3-butanediol, 3-methyl-1-butanol, ethyl tetradecanoate, ethyl decanoate, ethyl dodecanoate, butanoic acid, 3-methylbutanoic acid (isovaleric acid), 2-methylbutanoic acid, 2-methyl-1-propanol, ethyl acetate, ethyl caprylate, 2-phenylethanol, and 3-methylbutyl acetate increased as the fermentation progressed during 68 days of fermentation, which showed significant differences in the concentrations of odor-active compounds of commercially fermented makgeolli.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3