Co-Application of 1-MCP and Laser Microporous Plastic Bag Packaging Maintains Postharvest Quality and Extends the Shelf-Life of Honey Peach Fruit

Author:

Li Xuerui,Peng Sijia,Yu RenyingORCID,Li Puwang,Zhou Chuang,Qu Yunhui,Li Hong,Luo Haibo,Yu LijuanORCID

Abstract

Honey peach (Prunus persica L.) is highly nutritious; it is an excellent source of sugars, proteins, amino acids, vitamins, and mineral elements. However, it is a perishable climacteric fruit that is difficult to preserve. In this study, “Feicheng” honey peach fruit was used as a test material to investigate the synergistic preservation effect of 1-methylcyclopropene (1-MCP) and laser microporous film (LMF). The peach fruits were fumigated for 24 h with 2 μL L−1 1-MCP, then packed in LMF. In comparison with the control treatment, 1-MCP + LMF treatment markedly decreased the respiration rate, weight loss, and rot rate of peach fruits. Moreover, the combination of 1-MCP and LMF suppressed the increase in soluble solids (SS) and reducing sugars (RS), as well as the decrease in titratable acid (TA) and ascorbic acid (AsA). The combined application also maintained a high protopectin content and low soluble pectin content; it reduced the accumulation of superoxide anions (O2−) and hydrogen peroxide (H2O2). Except in a few samples, the catalase (CAT) and ascorbate peroxidase (APX) activities were higher when treated by 1-MCP + LMF. Conversely, the phenylalanine deaminase (PAL), peroxidase (POD), lipase, lipoxygenase (LOX), polygalacturonase (PG), β-glucosidase, and cellulase (Cx) activities were lower than in the control. Furthermore, 1-MCP + LMF treatment reduced the relative abundances of dominant pathogenic fungi (e.g., Streptomyces, Stachybotrys, and Issa sp.). The combined treatment improved the relative abundances of antagonistic fungi (e.g., Aureobasidium and Holtermanniella). The results indicated that the co-application of 1-MCP and LMF markedly reduced weight loss and spoilage, delayed the decline of nutritional quality, and inhibited the physiological and biochemical metabolic activities of peach during storage. These changes extended its shelf-life to 28 days at 5 °C. The results provide a reference for the commercial application of this technology.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3