Abstract
The impact of maltodextrin (10%) in combination with trehalose or glycerol at different levels (2.5% and 5%) and their mixture on the stability of freeze-dried pepsin from skipjack tuna stomach was studied. Addition of 5% trehalose and 10% maltodextrin yielded the powder (TPP-T5) with highest relative pepsin activity (p < 0.05). TPP-T5 had different shapes and sizes, with mean particle size of 65.42 ± 57.60 μm, poly-dispersity index of 0.474, and zeta potential of −19.95. It had bulk density of 0.53 kg m−3 and possessed fair flowability. The wetting time for TPP-T5 was 16.36 ± 0.73 min, and solubility was 93.58%. TPP-T5 stored at room temperature under different relative humidities could maintain proteolytic activity up to 4 weeks. Commercial porcine pepsin (CP) and crude tuna pepsinogen had molecular weights of 35.2 and 43.3 kDa, respectively, when analyzed using gel filtration (Sephadex G-50) and SDS-PAGE. Tuna pepsin had comparable hydrolysis toward threadfin bream muscle protein, whey protein isolate, and kidney bean protein isolate to commercial pepsin, especially at a higher level (15 units/g protein). Digested proteins contained peptides with varying molecular weights as determined by MALDI-TOF. Therefore, pepsin from skipjack tuna stomach could replace commercial porcine pepsin and was beneficial supplement for patients with maldigestion, particularly the elderly.
Funder
Prince of Songkla University
National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献