Trypsin from Pyloric Caeca of Asian Seabass: Purification, Characterization, and Its Use in the Hydrolysis of Acid-Soluble Collagen

Author:

Patil Umesh1ORCID,Baloch Khurshid Ahmed1,Nile Shivraj Hariram2,Kim Jun Tae3ORCID,Benjakul Soottawat13ORCID

Affiliation:

1. International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand

2. Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar 140306, Punjab, India

3. Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea

Abstract

The study aimed to purify trypsin from the pyloric caeca of Asian seabass (Lates calcarifer), and investigate its proteolytic capability toward acid-soluble collagen (ASC) in comparison with commercial porcine trypsin (CPT). Trypsin was purified from pyloric caeca, a leftover from the evisceration process, via ammonium sulphate (40–60% saturation) precipitation, and a soybean trypsin inhibitor (SBTI)–Sepharose 4B column. A 18.5-fold purification and a yield of 15.2% were obtained. SDS-PAGE analysis confirmed a single band of trypsin with a molecular weight of 23.5 kDa. Purified trypsin also showed the single band in native-PAGE. The optimal pH and temperature of trypsin for BAPNA (the specific substrate for amidase) hydrolysis were 8.5 and 60 °C, respectively. The trypsin was stable within the pH range of 7.0–9.5 and temperature range of 25–55 °C. Protease inhibition study confirmed that the purified enzyme was trypsin. The purified trypsin had a Michaelis–Menten constant (Km) and catalytic constant (kcat) of 0.078 mM and 5.4 s−1, respectively, when BAPNA was used. For the hydrolysis of TAME (the specific substrate for esterase), the Km and Kcat were 0.09 mM and 4.8 s−1, respectively. Partially purified seabass trypsin (PPST) had a slightly lower hydrolysis capacity toward ASC than CPT, as evidenced by the lower degree of hydrolysis and protein degradation when the former was used. Both the α-chain and β-chain became more degraded as the hydrolysis time increased. Based on MALDI-TOP, peptides with MW of 2992-2970 Da were dominant in the hydrolysates. Therefore, seabass trypsin could be used in the production of hydrolyzed collagen. It could have economic importance to the market, by replacing some commercial proteases, which have religious constraints.

Funder

National Science, Research and Innovation Fund

Prachayacharn scholarship

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3