Multibody System-Based Adaptive Formation Scheme for Multiple Under-Actuated AUVs

Author:

Huang Hai,Tang Qirong,Zhang Guocheng,Zhang Tiedong,Wan Lei,Pang Yongjie

Abstract

Underwater vehicles’ coordination and formation have attracted increasing attention since they have great potential for real-world applications. However, such vehicles are usually under-actuated and with very limited communication capabilities. On the basis of the multibody system concept, a multiple autonomous underwater vehicle formation and communication link framework has been established with an adaptive and radial basis function (RBF) strategy. For acoustic communication, a packets transmission scheme with topology and protocol has been investigated on the basis of an acoustic communication framework and transmission model. Moreover, the cooperative localization errors caused by packet loss are estimated through reinforcement learning radial basis function neural networks. Furthermore, in order to realize formation cruising, an adaptive RBF formation scheme with magnitude reduced multi-layered potential energy functions has been designed on the basis of a time-delayed network framework. Finally, simulations and experiments have been extensively performed to validate the effectiveness of the proposed methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3