Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks

Author:

Stylianoudaki Christina,Trichakis IoannisORCID,Karatzas George P.ORCID

Abstract

The scope of the present study is the estimation of the concentration of nitrates (NO3−) in groundwater using artificial neural networks (ANNs) based on easily measurable in situ data. For the purpose of the current study, two feedforward neural networks were developed to determine whether including land use variables would improve the model results. In the first network, easily measurable field data were used, i.e., pH, electrical conductivity, water temperature, air temperature, and aquifer level. This model achieved a fairly good simulation based on the root mean squared error (RMSE in mg/L) and the Nash–Sutcliffe Model Efficiency (NSE) indicators (RMSE = 26.18, NSE = 0.54). In the second model, the percentages of different land uses in a radius of 1000 m from each well was included in an attempt to obtain a better description of nitrate transport in the aquifer system. When these variables were used, the performance of the model increased significantly (RMSE = 15.95, NSE = 0.70). For the development of the models, data from chemical and physical analyses of groundwater samples from wells located in the Kopaidian Plain and the wider area of the Asopos River Basin, both in Greece, were used. The simulation that the models achieved indicates that they are a potentially useful tools for the estimation of groundwater contamination by nitrates and may therefore constitute a basis for the development of groundwater management plans.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference57 articles.

1. Global Status of Nitrate Contamination in Groundwater: Its Occurrence, Health Impacts, and Mitigation Measures;Shukla,2018

2. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes

3. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems

4. Guidelines for Drinking—Water Quality,2011

5. Artificial Neural Networks in Hydrology. I: Preliminary Concepts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3