Climate change impact assessment on groundwater level changes: A study of hybrid model techniques

Author:

Afrifa Stephen12ORCID,Zhang Tao1ORCID,Zhao Xin1,Appiahene Peter2,Yaw Mensah Samuel1

Affiliation:

1. School of Electrical and Information Engineering Tianjin University Tianjin China

2. Department of Computer Science and Informatics University of Energy and Natural Resources Sunyani Ghana

Abstract

AbstractOne of the most important sources of water supply is groundwater. However, the groundwater level (GWL) is significantly impacted by the global climate change. Therefore, under these more severe climate change conditions, the accurate and simple forecast of farmland GWL is a crucial component of agricultural water management. A hybrid model (HM) of Bayesian random forest (BRF), Bayesian support vector machine (BSVM), and Bayesian artificial neural network (BANN) is built in this study. The HM is made up of a Bayesian model averaging (BMA) and three machine learning models: random forest (RF), support vector machine (SVM), and artificial neural network. These three HMs are employed to help automate logical inference and decision‐making in business intelligence for groundwater management. For this purpose, data on 8 separate climatic factors that impact GWL changes in the study area were acquired. Nine distinct farming communities' GWL change data were utilised as the dependent variables for each model fit (community data). The effectiveness of the HM techniques was assessed using the evaluation metrics of mean absolute error (MAE), coefficient of determination (R2), mean absolute percent error (MAPE), and root mean square error (RMSE). The model fit in Suhum had the greatest performance with the highest accuracy (R2 varied from 0.9051 to 0.9679) and the lowest error scores (RMSE ranged from 0.0653 to 0.0727, and MAE ranged from 0.0121 to 0.0541), according to the models' evaluation results. The BRF delivered the greatest results when compared to the two independent HMs, the BSVM and BANN. Future GWL and climatic variable data may be trained using the trained HM techniques to determine the effects of climate change. Farmers, businesses, and civil society organisations might benefit from continuous monitoring of GWL data and education on climate change to help control and prevent excessive deteriorations of global climate change on GWL.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3