Deep learning based capsule networks for breast cancer classification using ultrasound images

Author:

Afrifa StephenORCID,Varadarajan VijayakumarORCID,Zhang Tao,Appiahene PeterORCID,Gyamfi DanielORCID,Gyening Rose-Mary Owusuaa MensahORCID,Mensah JacobORCID,Opoku Berchie SamuelORCID

Abstract

Purposes: Breast cancer (BC) is a disease in which the breast cells multiply uncontrolled. Breast cancer is one of the most often diagnosed malignancies in women worldwide. Early identification of breast cancer is critical for limiting the impact on affected people's health conditions. The influence of technology and artificial intelligence approaches (AI) in the health industry is tremendous as technology advances. Deep learning (DL) techniques are used in this study to classify breast lumps. Materials and Methods: The study makes use of two distinct breast ultrasound images (BUSI) with binary and multiclass classification. To assist the models in understanding the data, the datasets are exposed to numerous preprocessing and hyperparameter approaches. With data imbalance being a key difficulty in health analysis, due to the likelihood of not having a condition exceeding that of having the disease, this study applies a cutoff stage to impact the decision threshold in the datasets data augmentation procedures. The capsule neural network (CapsNet), Gabor capsule network (GCN), and convolutional neural network (CNN) are the DL models used to train the various datasets. Results: The findings showed that the CapsNet earned the maximum accuracy value of 93.62% while training the multiclass data, while the GCN achieved the highest model accuracy of 97.08\% when training the binary data. The models were also evaluated using a variety of performance assessment parameters, which yielded consistent results across all datasets. Conclusion: The study provides a non-invasive approach to detect breast cancer; and enables stakeholders, medical practitioners, and health research enthusiasts a fresh view into the analysis of breast cancer detection with DL techniques to make educated judgements.

Publisher

Syncsci Publishing Pte., Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3