A machine learning-based approach to predict groundwater nitrate susceptibility using field measurements and hydrogeological variables in the Nonsan Stream Watershed, South Korea

Author:

Lee Jae Min,Ko Kyung-Seok,Yoo Keunje

Abstract

AbstractIdentifying and predicting the nitrate inflow and distribution characteristics of groundwater is critical for groundwater contamination control and management in rural mixed-land-use areas. Several groundwater nitrate prediction models have been developed; in particular, a nitrate concentration model that uses dissolved ions in groundwater as an input variable can produce accurate results. However, obtaining sufficient chemical data from a target area remains challenging. We tested whether machine learning models can effectively determine nitrate contamination using field-measured data (pH, electrical conductivity, water temperature, dissolved oxygen, and redox potential) and existing geographic information system (GIS) data (lithology, land cover, and hydrogeological properties) from the Nonsan Stream Watershed in South Korea, an area where nitrate contamination occurs owing to intensive agricultural activities. In total, 183 groundwater samples from different wells, mixed municipal sites, and agricultural activities were used. The results indicated that among the four machine learning models (artificial neural network (ANN), classification and regression tree (CART), random forest (RF), and support vector machine (SVM)), the RF (R2: 0.74; RMSE: 3.5) and SVM (R2: 0.80; RMSE: 2.8) achieved the highest prediction accuracy and smallest error in all groundwater parameter estimates. Land cover, aquifer type, and soil drainage were the primary RF and SVM model input variables, representing agricultural activity-related and hydrogeological infiltration effects. Our research found that in rural areas with limited hydro-chemical data, RF and SVM models could be used to identify areas at high risk of nitrate contamination using spatial variability, GIS-aided visualization, and easily accessible field-measured groundwater quality data.

Funder

Korea Ministry of Environment

basic research project of KIGAM

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3