A performance evaluation of random forest, artificial neural network, and support vector machine learning algorithms to predict spatio-temporal land use-land cover dynamics: a case from lusaka and colombo

Author:

Mutale Bwalya,Withanage Neel Chaminda,Mishra Prabuddh Kumar,Shen Jingwei,Abdelrahman Kamal,Fnais Mohammed S.

Abstract

Reliable information plays a pivotal role in sustainable urban planning. With advancements in computer technology, geoinformatics tools enable accurate identification of land use and land cover (LULC) in both spatial and temporal dimensions. Given the need for precise information to enhance decision-making, it is imperative to assess the performance and reliability of classification algorithms in detecting LULC changes. While research on the application of machine learning algorithms in LULC evaluation is widespread in many countries, it remains limited in Zambia and Sri Lanka. Hence, we aimed to assess the reliability and performance of support vector machine (SVM), random forest (RF), and artificial neural network (ANN) algorithms for detecting changes in land use and land cover taking Lusaka and Colombo City as the study area from 1995 to 2023 using Landsat Thematic Mapper (TM), and Operational Land Imager (OLI). The results reveal that the RF and ANN models exhibited superior performance, both achieving Mean Overall Accuracy (MOA) of 96% for Colombo and 96% and 94% for Lusaka, respectively. Meanwhile, the SVM model yielded Overall Accuracy (OA) ranging between 77% and 94% for the years 1995 and 2023. Further, RF algorithm notably produced slightly higher OA and kappa coefficients, ranging between 0.92 and 0.97, when compared to both the ANN and SVM models, across both study areas. A predominant land use change was observed as the expansion of vegetation by 11,990 ha (60.4%), primarily through the conversion of 1,926 ha of bare lands into vegetation in Lusaka during 1995–2005. However, a noteworthy shift was observed as built-up areas experienced significant growth from 2005 to 2023, with a total increase of 25,110 ha (71%). However, despite the conversion of vegetation to built-up areas during the entire period from 1995 to 2023, there was still a net gain of over 11,000 ha (53.4%) in vegetation cover. In case of Colombo, built-up areas expanded by 1,779 ha (81.5%), while vegetation land decreased by 1,519 ha (62.3%) during concerned period. LULC simulation also indicated a 160-ha expansion of built-up areas during the 2023–2035 period in Lusaka. Likewise, Colombo saw a rise in built-up areas by 337 ha within the same period. Overall, the RF algorithm outperformed the ANN and SVM algorithms. Additionally, the prediction and simulation results indicate an upward trend in built-up areas in both scenarios. The resultant land cover maps provide a crucial baseline that will be invaluable for urban planning and policy development agencies in both countries.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3