Classification of Alpine Grasslands in Cold and High Altitudes Based on Multispectral Landsat-8 Images: A Case Study in Sanjiangyuan National Park, China

Author:

Wei YanqiangORCID,Wang Wenwen,Tang Xuejie,Li Hui,Hu Huawei,Wang XufengORCID

Abstract

Land-use–cover change (LUCC)/vegetation cover plays a critical role in Earth system science and is a reflection of human activities and environmental changes. LUCC will affect the structure and function of ecosystems and a series of other terrestrial surface processes, such as energy exchange, water circulation, biogeochemical circulation, and vegetation productivity. Therefore, accurate LUCC mapping and vegetation cover monitoring are the bases for simulating the global carbon and hydrological cycles, studying the interactions of the land surface and climate, and assessing land degradation. Based on field GPS surveys and UAV data, with cloud-free and snow/glacier algorithms and the SVM classifier to train and model alpine grassland, the alpine grassland and LUCC were extracted by using Landsat-8 OLI satellite images in Sanjiangyuan National Park in this paper. The latest datasets of vegetation types with 30 m × 30 m spatial resolution in the three parks were prepared and formed. The classification results show that the SVM classifier could better distinguish the major land-use types, and the overall classification accuracy was very high. However, in the alpine grassland subcategories, the classification accuracies of the four typical grasslands were relatively low, especially between desert steppes and alpine meadows, and desert steppes and alpine steppes. It manifests the limitations of Landsat-8 multispectral remote sensing imageries in finer-resolution grassland classifications of high-altitude alpine mountains. The method can be utilized for other multispectral satellite imageries with the same band matching, such as Landsat 7, Landsat 9, Sentinel-2, etc. The method described in this paper can rapidly and efficiently process annual alpine grassland maps of the source areas of the Yellow River, the Yangtze River, and the Lancang River. It can provide timely and high-spatial-resolution datasets for supporting scientific decisions for the sustainable management of Sanjiangyuan National Park.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3