Improvements in Forest Segmentation Accuracy Using a New Deep Learning Architecture and Data Augmentation Technique

Author:

He Yan12,Jia Kebin12ORCID,Wei Zhihao3ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100021, China

2. Beijing Laboratory of Advanced Information Network, Beijing 100021, China

3. School of Earth and Space Sciences, Peking University, Beijing 100871, China

Abstract

Forests are critical to mitigating global climate change and regulating climate through their role in the global carbon and water cycles. Accurate monitoring of forest cover is, therefore, essential. Image segmentation networks based on convolutional neural networks have shown significant advantages in remote sensing image analysis with the development of deep learning. However, deep learning networks typically require a large amount of manual ground truth labels for training, and existing widely used image segmentation networks struggle to extract details from large-scale high resolution satellite imagery. Improving the accuracy of forest image segmentation remains a challenge. To reduce the cost of manual labelling, this paper proposed a data augmentation method that expands the training data by modifying the spatial distribution of forest remote sensing images. In addition, to improve the ability of the network to extract multi-scale detailed features and the feature information from the NIR band of satellite images, we proposed a high-resolution forest remote sensing image segmentation network by fusing multi-scale features based on double input. The experimental results using the Sanjiangyuan plateau forest dataset show that our method achieves an IoU of 90.19%, which outperforms prevalent image segmentation networks. These results demonstrate that the proposed approaches can extract forests from remote sensing images more effectively and accurately.

Funder

Basic Research Program of Qinghai Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3