Glacier Monitoring Based on Multi-Spectral and Multi-Temporal Satellite Data: A Case Study for Classification with Respect to Different Snow and Ice Types

Author:

Florath JanineORCID,Keller SinaORCID,Abarca-del-Rio RodrigoORCID,Hinz StefanORCID,Staub Guido,Weinmann MartinORCID

Abstract

Remote sensing techniques are frequently applied for the surveying of remote areas, where the use of conventional surveying techniques remains difficult and impracticable. In this paper, we focus on one of the remote glacier areas, namely the Tyndall Glacier area in the Southern Patagonian Icefield in Chile. Based on optical remote sensing data in the form of multi-spectral Sentinel-2 imagery, we analyze the extent of different snow and ice classes on the surface of the glacier by means of pixel-wise classification. Our study comprises three main steps: (1) Labeled Sentinel-2 compliant data are obtained from theoretical spectral reflectance curves, as there are no training data available for the investigated area; (2) Four different classification approaches are used and compared in their ability to identify the defined five snow and ice types, thereof two unsupervised approaches (k-means clustering and rule-based classification via snow and ice indices) and two supervised approaches (Linear Discriminant Analysis and Random Forest classifier); (3) We first focus on the pixel-wise classification of Sentinel-2 imagery, and we then use the best-performing approach for a multi-temporal analysis of the Tyndall Glacier area. While the achieved classification results reveal that all of the used classification approaches are suitable for detecting different snow and ice classes on the glacier surface, the multi-temporal analysis clearly reveals the seasonal development of the glacier. The change of snow and ice types on the glacier surface is evident, especially between the end of ablation season (April) and the end of accumulation season (September) in Southern Chile.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3