Rock glaciers as proxy for machine learning based debris‐covered glacier mapping of Kinnaur District, Himachal Pradesh

Author:

Pradhan Ipshita Priyadarsini1,Mahanta Kirti Kumar1,Tiwari Nishant1,Shukla Dericks Praise1ORCID

Affiliation:

1. DExtER Lab, School of Civil and Environmental Engineering Indian Institute of Technology‐Mandi Mandi India

Abstract

AbstractThis research introduces an innovative approach by utilising rock glaciers (RGs) as a proxy for mapping debris‐covered glaciers (DCGs). This approach focuses on the interconnected nature of glaciers, DCGs and RGs in a continuum where DCGs can transform into RGs over time due to various processes. This study utilises six machine learning models—logistic regression (LR), support vector machine (SVM), K‐nearest neighbour (KNN), Naïve Bayes (NB), decision tree (DT) and random forest (RF)—combined with multispectral satellite data (Sentinel‐2 and Landsat 8) and topographical data derived from ALOS PALSAR DEM. Performance metrics such as accuracy, area under the curve (AUC) score, precision, recall and F1‐score were evaluated to assess model performance. This detailed mapping provides a precise estimation of the extent of DCGs in the Kinnaur district. The estimated DCG areas revealed intriguing variation across models, with RF (9.71%), KNN (9.67%) and NB (9.41%) yielding similar predictions. SVM (11.61%) projected a slightly larger DCG area, whereas DT (5.54%) and LR (25.55%) provided contrasting results. Validation against high‐resolution satellite images, Google Earth images and glacier inventories confirmed the accuracy and reliability of our approach. Based on our findings for our specific study, the most effective method for mapping DCGs is RF, followed by KNN, NB, DT and SVM. The combination of machine learning models and RG data presents a novel and promising approach to remote sensing‐based DCG mapping, with potential applications for other regions and broader environmental studies.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3