Hybrid Printing of Silver-Based Inks for Application in Flexible Printed Sensors

Author:

Krzemiński Jakub1,Baraniecki Dominik1,Dominiczak Jan1ORCID,Wojciechowska Izabela1,Raczyński Tomasz1,Janczak Daniel2,Jakubowska Małgorzata2

Affiliation:

1. Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 00-661 Warsaw, Poland

2. Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering (IMIB), Warsaw University of Technology, 00-661 Warsaw, Poland

Abstract

This study explores the potential benefits of combining different printing techniques to improve the production of flexible printed sensors, which is a relevant application for modern coating and surface design. The demand for cheap, flexible, precise, and scalable sensors for wearable electronics is increasing, and printed electronics techniques have shown great potential in meeting these requirements. To achieve higher performance and synergy, the paper introduces the concept of hybrid printing of electronics by combining aerosol jet printing and screen printing. This multi-process approach allows for large-scale production with high printing precision. The study prepares hybrid connections on a flexible substrate foil for use in flexible printed sensor manufacturing. The research team tests different combinations of printed layers and annealing processes and finds that all prepared samples exhibit high durability during mechanical fatigue tests. Surface morphology, SEM images, and cross-section profiles demonstrate the high quality of printed layers. The lowest resistance among the tested hybrid connections obtained was 1.47 Ω. The study’s findings show that the hybrid printing approach offers a novel and promising solution for the future production of flexible sensors. Overall, this research represents an interdisciplinary approach to modern coating and surface design that addresses the need for improved production of wearable electronics. By combining different printing techniques, the study demonstrates the potential for achieving high-volume production, miniaturization, and high precision, which are essential for the ever-growing market of wearable sensors.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3