Printability of Collecting Electrode Using AJP for New Construction of Photovoltaic Device

Author:

Krzemiński Jakub,Dominiczak Jan,Baraniecki Dominik,Janczak Daniel,Raczyński Tomasz,Ostapko Jakub,Jakubowska Małgorzata

Abstract

In 2018, the European Parliament and Council laid down a directive about the promotion of the use of energy from renewable sources connected with the Paris Agreement, which sets a global ambition on climate change mitigation through deep and fast cuts in greenhouse gas emissions. Since then, the science world has been even more focused on the development of green technologies such as wind farms, waterpower stations, and photovoltaics as the European Union is preparing to shift to renewables-based energy systems. Each green power technology has its own problems and limitations. Nevertheless, for environmental protection, new power technologies have to be implemented in the near future as primary power sources. Described in this article is the application of aerosol jet printing in manufacture of photovoltaic cells, moving the technology boundaries further toward highly efficient, cost-effective, green power production. The research focused on utilizing aerosol jet printing technology to create finger-shaped collecting electrodes on a newly constructed, non-silicon photovoltaic cell, based on metal oxides. Three commercial nanosilver inks were investigated considering their printing parameters, printability on the specified substrate (AZO-coated glass, AZO-coated copper plate), resistivity of the cured composite, quality of the overprints, and application in photovoltaics. As a result, we obtained finger-shaped collecting electrodes with a resistivity of 3.5 µΩ∙cm and 8 µm width, which compares well with the literature.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3