Conformable and robust force sensors to enable precision joint replacement surgery

Author:

Ives Liam,Pace Alizée,Bor Fabian,Jing Qingshen,Wade Tom,Cama JehangirORCID,Khanduja Vikas,Kar-Narayan Sohini

Abstract

Balancing forces within weight-bearing joints such as the hip during joint replacement surgeries is essential for implant longevity. Minimising implant failure is vital to improve patient wellbeing and alleviate pressure on healthcare systems. With improvements in surgery, hip replacement patients are now often younger and more active than in previous generations, and their implants correspondingly need to survive higher stresses. However, force balancing currently depends entirely on surgical skill: no sensors can provide quantitative force feedback within the hip joint’s small, complex geometry. Here, we solve this unmet clinical need by presenting a thin and conformable microfluidic force sensor, which is compatible with the standard surgical process. We optimised the design using finite element modelling, then incorporated and calibrated our sensor in a model hip implant. Using a bespoke testing rig, we demonstrated high sensitivity at typical forces experienced during hip replacements. We anticipate that these sensors will aid implant positioning, increasing the lifetime of hip replacements, and represent a powerful new surgical tool for a range of orthopaedic procedures where force balancing is crucial.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Howard, P. et al. National Joint Registry | 17th Annual Report. www.njrcentre.org.uk.

2. Wittenauer, R. , Smith, L. & Aden, K . Background Paper 6.12 Osteoarthritis. (2013).

3. Changing Demographics of Patients with Total Joint Replacement

4. Evans, J. T. et al. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. www.thelancet.com vol. 393 www.thelancet.com (2019).

5. Revision total joint arthroplasty: Does medicare reimbursement justify time spent?;Orthopedics,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3