Abstract
For a low cost, there are industrial infrared monitoring systems used for imperfection detection and identification in welded joints. The key drawback that impedes real life industrial applications is the low spatial resolution, as well as the temporal resolution of low-cost infrared (IR) cameras. This is also the case in tungsten inert gas (TIG) welding. Taking into consideration the influence of voltage on the arc energy and heat input, high frequency sampled voltage was used to evaluate the interpolated temporal resolution of IR sequences. Additionally, a reflected temperature correction method was proposed to reduce the uncertainty of absolute temperature measurement with a thermographic camera. The proposed method was applied to detect several imperfection types, such as lack of or incomplete penetration as well as incorrect weld shape and size (including burnouts). Results obtained for different interpolation factors were compared. The obtained results emphasize the validity of reflected temperature correction method. For the weld defects detection task, the smallest detectable defect was found for various interpolation factors. Moreover, the correspondence of arc voltage and the joint temperature was checked. Additionally, a set of decision rules was elaborated on and applied to distinguish between various joint conditions. It was found that defects that do not have symmetrical temperature distribution with respect to the joint axis are harder to identify.
Funder
This research was funded by National Science Centre (NCN), Miniatura 3 project
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献