Abstract
Steel is one of the most widely used materials in the past and today. Various techniques are used to recycle this material, including the electric arc furnace. This process has several advantages, but it also has a major disadvantage, namely, the generation of waste such as electric arc furnace dusts. Electric arc furnace dusts are classified as hazardous waste due to their high percentage of heavy metals, including zinc. Consequently, in the present research, the leaching of zinc for recovery with sulfuric acid solutions at ambient temperature and atmospheric pressure is evaluated, as well as the reuse of the leaching process residue as a raw material for ceramic materials. The sulfuric acid solutions were 0.125, 0.25, 0.5, and 1 molar, using clay for ceramic conforming and percentages of the leaching residue from 0–50%. The results showed that the optimum solution was 1 molar sulfuric acid, recovering all the zinc in the sample in 36 h. Furthermore, it was found that the clay-conformed ceramics with less than 40% leaching residue showed acceptable physical and mechanical properties according to standards. Therefore, this research develops a new environmental hydrometallurgy in which metallic elements of interest are valorized and the production of waste is avoided, reducing the deposition of hazardous waste in landfills and the extraction of raw materials for the manufacture of construction materials.
Subject
General Materials Science,Metals and Alloys