Application of PLC-Based Spectrophotometric System Nitrogen Protection Device to Automated Direct Measurement of Target Substances in Zinc Hydrometallurgy

Author:

Zhang Xuefei1,Duan Ning123,Jiang Linhua123,Xu Fuyuan23,Yu Zhaosheng4,Cheng Wen2,Lv Wenbao1,Qiu Yibing1

Affiliation:

1. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

3. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

4. Tianjin Xinke Environmental Protection Technology Co., Ltd., Tianjin 300457, China

Abstract

Due to the fast material reaction in zinc hydrometallurgy, the traditional national standard photometric method cannot capture the characteristic information of target substances in real time. Herein, a nitrogen protection device is built based on ultraviolet spectrophotometry, supplemented by a programmable logic controller (PLC), to form an automatic control system for the direct detection of target substances (SO42−, Pb2+ and S2−) in zinc hydrometallurgy. The baseline straightness comparison results show that the nitrogen atmosphere can effectively improve the stability of the instrument. Furthermore, the detection sensitivity of SO42−, Pb2+ and S2− under the nitrogen atmosphere is higher than that of the air atmosphere, manifesting in sensitivity increases of 16.23%, 18.05% and 17.91%, respectively. Additionally, devices based on PLC systems show advantages over manual control both in states feedback and information backtrack. Moreover, the regulation time and nitrogen consumption during the regulation process are reduced by 80% and 75%, respectively, which effectively reduces the test cost and improves the equipment utilization rate (from four cycles per day to six cycles per day). The device can meet the requirements of different target substances and different process conditions by changing the electronic control parts and air source, so it has great application potential in the automatic direct measurement of target substances in zinc hydrometallurgy.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3