An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting

Author:

Wang Runjie,Shi Wenzhong,Liu Xianglei,Li Zhiyuan

Abstract

Historical measurements are usually used to build assimilation models in sequential data assimilation (S-DA) systems. However, they are always disturbed by local noises. Simultaneously, the accuracy of assimilation model construction and assimilation forecasting results will be affected. The fast Fourier transform (FFT) method can be used to acquire de-noised historical traffic flow measurements to reduce the influence of local noises on constructed assimilation models and improve the accuracy of assimilation results. In the practical signal de-noising applications, the FFT method is commonly used to de-noise the noisy signal with known noise frequency. However, knowing the noise frequency is difficult. Thus, a proper cutoff frequency should be chosen to separate high-frequency information caused by noises from the low-frequency part of useful signals under the unknown noise frequency. If the cutoff frequency is too high, too much noisy information will be treated as useful information. Conversely, if the cutoff frequency is too low, part of the useful information will be lost. To solve this problem, this paper proposes an adaptive cutoff frequency selection (A-CFS) method based on cross-validation. The proposed method can determine a proper cutoff frequency and ensure the quality of de-noised outputs for a given dataset using the FFT method without noise frequency information. Experimental results of real-world traffic flow data measurements in a sub-area of a highway near Birmingham, England, demonstrate the superior performance of the proposed A-CFS method in noisy information separation using the FFT method. The differences between true and predicted traffic flow values are evaluated using the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage (MAPE) values. Compared to the results of the two commonly used de-noising methods, i.e., discrete wavelet transform (DWT) and ensemble empirical mode decomposition (EEMD) methods, the short-term traffic flow forecasting results of the proposed A-CFS method are much more reliable. In terms of the MAE value, the average relative improvements of the assimilation model built using the proposed method are 19.26%, 3.47%, and 4.25%, compared to the model built using raw data, DWT method, and EEMD method, respectively; the corresponding average relative improvements in RMSE are 19.05%, 5.36%, and 3.02%, respectively; lastly, the corresponding average relative improvements in MAPE are 18.88%, 2.83%, and 2.28%, respectively. The test results show that the proposed method is effective in separating noises from historical measurements and can improve the accuracy of assimilation model construction and assimilation forecasting results.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3