Survey of Decomposition-Reconstruction-Based Hybrid Approaches for Short-Term Traffic State Forecasting

Author:

Chen YuORCID,Wang Wei,Hua Xuedong,Zhao DeORCID

Abstract

Traffic state prediction provides key information for intelligent transportation systems (ITSs) for proactive traffic management, the importance of which has become the reason for the tremendous number of research papers in this field. Over the last few decades, the decomposition-reconstruction (DR) hybrid models have been favored by numerous researchers to provide a more robust framework for short-term traffic state prediction for ITSs. This study surveyed DR-based works for short-term traffic state forecasting that were reported in the past circa twenty years, particularly focusing on how decomposition and reconstruction strategies could be utilized to enhance the predictability and interpretability of basic predictive models of traffic parameters. The reported DR-based models were classified and their applications in this area were scrutinized. Discussion and potential future directions are also provided to support more sophisticated applications. This work offers modelers suggestions and helps to choose appropriate decomposition and reconstruction strategies in their research and applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks;Physica A: Statistical Mechanics and its Applications;2023-12

2. Discrete wavelet transform application for bike sharing system check-in/out demand prediction;Transportation Letters;2023-05-30

3. Empirical Mode Decomposition and Stationary Wavelet Transformation in Internet Traffic Prediction;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2023-05-20

4. CTFNet: Long-Sequence Time-Series Forecasting Based on Convolution and Time–Frequency Analysis;IEEE Transactions on Neural Networks and Learning Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3