Urban Safety: An Image-Processing and Deep-Learning-Based Intelligent Traffic Management and Control System

Author:

Reza SelimORCID,Oliveira Hugo S.ORCID,Machado José J. M.ORCID,Tavares João Manuel R. S.ORCID

Abstract

With the rapid growth and development of cities, Intelligent Traffic Management and Control (ITMC) is becoming a fundamental component to address the challenges of modern urban traffic management, where a wide range of daily problems need to be addressed in a prompt and expedited manner. Issues such as unpredictable traffic dynamics, resource constraints, and abnormal events pose difficulties to city managers. ITMC aims to increase the efficiency of traffic management by minimizing the odds of traffic problems, by providing real-time traffic state forecasts to better schedule the intersection signal controls. Reliable implementations of ITMC improve the safety of inhabitants and the quality of life, leading to economic growth. In recent years, researchers have proposed different solutions to address specific problems concerning traffic management, ranging from image-processing and deep-learning techniques to forecasting the traffic state and deriving policies to control intersection signals. This review article studies the primary public datasets helpful in developing models to address the identified problems, complemented with a deep analysis of the works related to traffic state forecast and intersection-signal-control models. Our analysis found that deep-learning-based approaches for short-term traffic state forecast and multi-intersection signal control showed reasonable results, but lacked robustness for unusual scenarios, particularly during oversaturated situations, which can be resolved by explicitly addressing these cases, potentially leading to significant improvements of the systems overall. However, there is arguably a long path until these models can be used safely and effectively in real-world scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SSGCRTN: a space-specific graph convolutional recurrent transformer network for traffic prediction;Applied Intelligence;2024-09-07

2. Optimizing Kernel Density Estimation Bandwidth for Road Traffic Accident Hazard Identification: A Case Study of the City of London;Sustainability;2024-08-14

3. A Review of Research on Traffic Flow Prediction Methods Based on Deep Learning;Proceedings of the 2024 International Conference on Digital Society and Artificial Intelligence;2024-05-24

4. Smart City Traffic Control System: A Literature Review;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

5. Multi-Head Attention Spatial-Temporal Graph Neural Networks for Traffic Forecasting;Journal of Computer and Communications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3