Tailoring Mission Effectiveness and Efficiency of a Ground Vehicle Using Exergy-Based Model Predictive Control (MPC)

Author:

Jane RobertORCID,Kim Tae Young,Glass Emily,Mossman Emilee,James CoreyORCID

Abstract

To ensure dominance over a multi-domain battlespace, energy and power utilization must be accurately characterized for the dissimilar operational conditions. Using MATLAB/Simulink in combination with multiple neural networks, we created a methodology which was simulated the energy dynamics of a ground vehicle in parallel to running predictive neural network (NN) based predictive algorithms to address two separate research questions: (1) can energy and exergy flow characterization be developed at a future point in time, and (2) can we use the predictive algorithms to extend the energy and exergy flow characterization and derive operational intelligence, used to inform our control based algorithms or provide optimized recommendations to a battlefield commander in real-time. Using our predictive algorithms we confirmed that the future energy and exergy flow characterizations could be generated using the NNs, which was validated through simulation using two separately created datasets, one for training and one for testing. We then used the NNs to implement a model predictive control (MPC) framework to flexibly operate the vehicles thermal coolant loop (TCL), subject to exergy destruction. In this way we could tailor the performance of the vehicle to accommodate a more mission effective solution or a less energy intensive solution. The MPC resulted in a more effective solution when compared to six other simulated conditions, which consumed less exergy than two of the six cases. Our results indicate that we can derive operational intelligence from the predictive algorithms and use it to inform a model predictive control (MPC) framework to reduce wasted energy and exergy destruction subject to the variable operating conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3