Developing AI/ML Based Predictive Capabilities for a Compression Ignition Engine Using Pseudo Dynamometer Data

Author:

Jane RobertORCID,Kim Tae Young,Rose Samantha,Glass Emily,Mossman Emilee,James CoreyORCID

Abstract

Energy and power demands for military operations continue to rise as autonomous air, land, and sea platforms are developed and deployed with increasingly energetic weapon systems. The primary limiting capability hindering full integration of such systems is the need to effectively and efficiently manage, generate, and transmit energy across the battlefield. Energy efficiency is primarily dictated by the number of dissimilar energy conversion processes in the system. After combustion, a Compression Ignition (CI) engine must periodically continue to inject fuel to produce mechanical energy, simultaneously generating thermal, acoustic, and fluid energy (in the form of unburnt hydrocarbons, engine coolant, and engine oil). In this paper, we present multiple sets of Shallow Artificial Neural Networks (SANNs), Convolutional Neural Network (CNNs), and K-th Nearest Neighbor (KNN) classifiers, capable of approximating the in-cylinder conditions and informing future optimization and control efforts. The neural networks provide outstanding predictive capabilities of the variables of interest and improve understanding of the energy and power management of a CI engine, leading to improved awareness, efficiency, and resilience at the device and system level.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3