Artificial neural network technique to predict dynamic fracture of particulate composite

Author:

Kushvaha Vinod1ORCID,Kumar S Anand2,Madhushri Priyanka3,Sharma Aanchna1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Jammu, India

2. Department of Mechanical Engineering, Indian Institute of Technology Jammu, India

3. Stanley Black and Decker, USA

Abstract

In this paper, the artificial neural network technique using a multi-layer perceptron feed forward scheme was used to model and predict the mode-I fracture behaviour of particulate polymer composites when subjected to impact loading. A neural network consisting of three-layers was employed to develop the network. Artificial neural network was constructed using six input parameters such as shear wave speed ( CS), density ( D), elastic modulus ( Ed), longitudinal wave speed ( CL), volume fraction ( Vf) and time ( t). The influence of input parameters on the output stress intensity factor and crack-initiation fracture toughness were found to be in the order of t >  CS >  D >  Ed >  CL >  Vf. The degree of accuracy of prediction was 92.7% for stress intensity factor. In this regard, artificial neural network can be used in the modelling and prediction of fracture behaviour of particulate polymer composites under impact loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3