Abstract
Image reconstruction of Magnetic induction tomography (MIT) is an ill-posed problem. The non-linear characteristics lead many difficulties to its solution. In this paper, a method based on a Generative Adversarial Network (GAN) is presented to tackle these barriers. Firstly, the principle of MIT is analyzed. Then the process for finding the global optimum of conductivity distribution is described as a training process, and the GAN model is proposed. Finally, the image was reconstructed by a part of the model (the generator). All datasets are obtained from an eight-channel MIT model by COMSOL Multiphysics software. The voltage measurement samples are used as input to the trained network, and its output is an estimate for image reconstruction of the internal conductivity distribution. The results based on the proposed model and the traditional algorithms were compared, which have shown that average root mean squared error of reconstruction results obtained by the proposed method is 0.090, and the average correlation coefficient with original images is 0.940, better than corresponding indicators of BPNN and Tikhonov regularization algorithms. Accordingly, the GAN algorithm was able to fit the non-linear relationship between input and output, and visual images also show that it solved the usual problems of artifact in traditional algorithm and hot pixels in L2 regularization, which is of great significance for other ill-posed or non-linear problems.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
The 111 Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献