Metal Particle Detection by Integration of a Generative Adversarial Network and Electrical Impedance Tomography (GAN-EIT) for a Wet-Type Gravity Vibration Separator

Author:

Ibrahim Kiagus Aufa1ORCID,Sejati Prima Asmara12ORCID,Darma Panji Nursetia1,Nakane Akira3,Takei Masahiro1

Affiliation:

1. Department of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan

2. Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

3. Sanritsu Machine Industry Co., Ltd., Chiba 263-0002, Japan

Abstract

The minor copper (Cu) particles among major aluminum (Al) particles have been detected by means of an integration of a generative adversarial network and electrical impedance tomography (GAN-EIT) for a wet-type gravity vibration separator (WGS). This study solves the problem of blurred EIT reconstructed images by proposing a GAN-EIT integration system for Cu detection in WGS. GAN-EIT produces two types of images of various Cu positions among major Al particles, which are (1) the photo-based GAN-EIT images, where blurred EIT reconstructed images are enhanced by GAN based on a full set of photo images, and (2) the simulation-based GAN-EIT images. The proposed metal particle detection by GAN-EIT is applied in experiments under static conditions to investigate the performance of the metal detection method under single-layer conditions with the variation of the position of Cu particles. As a quantitative result, the images of detected Cu by GAN-EIT ψ̿GAN in different positions have higher accuracy as compared to σ*EIT. In the region of interest (ROI) covered by the developed linear sensor, GAN-EIT successfully reduces the Cu detection error of conventional EIT by 40% while maintaining a minimum signal-to-noise ratio (SNR) of 60 [dB]. In conclusion, GAN-EIT is capable of improving the detailed features of the reconstructed images to visualize the detected Cu effectively.

Funder

Japan Science and Technology Agency (JST) Adaptable and Seamless Technology Transfer Program through Target-driven R&D

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3