Contribution Ratio Assessment of Process Parameters on Robotic Milling Performance

Author:

Ni Jing,Dai Rulan,Yue XiaopengORCID,Zheng Junqiang,Feng KaiORCID

Abstract

Robotic milling has broad application prospects in many processing fields. However, the milling performance of a robot in a certain posture, such as in face milling or grooving tasks, is extremely sensitive to process parameters due to the influence of the serial structure of the robot system. Improper process parameters are prone to produce machining defects such as low surface quality. These deficiencies substantially decrease the further application development of robotic milling. Therefore, this paper selected a certain posture and carried out the robotic flat-end milling experiments on a 7075-T651 high-strength aeronautical aluminum alloy under dry conditions. Milling load, surface quality and vibration were selected to assess the influence of process parameters like milling depth, spindle speed and feed rate on the milling performance. Most notably, the contribution ratio based on the analysis of variance (ANOVA) was introduced to statistically investigate the relation between parameters and milling performance. The obtained results show that milling depth is highly significant in milling load, which had a contribution ratio of 69.25%. Milling depth is also highly significant in vibration, which had a contribution ratio of 51.41% in the X direction, 41.42% in the Y direction and 75.97% in the Z direction. Moreover, the spindle speed is highly significant in surface roughness, which had a contribution ratio of 48.02%. This present study aims to quantitatively evaluate the influence of key process parameters on robotic milling performance, which helps to select reasonable milling parameters and improve the milling performance of the robot system. It is beneficial to give full play to the advantages of robots and present more possibilities of robot applications in machining and manufacturing.

Funder

Zhejiang key research and development project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3