Experimental study and mathematical modelling of face milling forces of high-strength high-viscosity shipbuilding steel

Author:

Rusanovskiy Sergey1ORCID,Khudyakov Michael1,Kapustina Natalya1ORCID

Affiliation:

1. Northern (Arctic) Federal University named after M.V. Lomonosov, Russia

Abstract

Mechanical processing of hole edges in large-size hull structures of single and double curvature for welding saturation parts into them is an urgent task of shipbuilding. A considerable amount of such machining has to be performed directly on the slipway on a fully assembled structure. To perform such works non-stationary technological machining complexes are used, which have reduced rigidity in comparison with stationary equipment. The article summarizes the results of mathematical modeling of cutting forces during face milling of a workpiece made of high-strength high-viscosity shipbuilding steel. The application of high-speed face milling in order to reduce the value and non-uniformity of cutting forces is theoretically substantiated. Recommendations for selection of technological cutting modes and tool geometry are determined. The obtained experimental data confirm the possibility and expediency of high-speed face milling of hull structures made of hard-to-machine materials under conditions of a low-rigid technological system.

Publisher

Gruppo Italiano Frattura

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3