Well Rate and Placement for Optimal Groundwater Remediation Design with A Surrogate Model

Author:

Sbai

Abstract

A new surrogate-assisted optimization formulation for groundwater remediation design was developed. A stationary Eulerian travel time model was used in lieu of a conservative solute transport model. The decision variables of the management model are well locations and their flow rates. The objective function adjusts the residence time distribution between all pairs of injection-production wells in the remediation system. This goal is achieved by using the Lorenz coefficient as an effective metric to rank the relative efficiency of many remediation policies. A discrete adjoint solver was developed to provide the sensitivity of the objective function with respect to changes in decision variables. The quality management model was checked with simple solutions and then applied to hypothetical two- and three-dimensional test problems. The performance of the simulation-optimization approach was evaluated by comparing the initial and optimal remediation designs using an advective-dispersive solute transport simulator. This study shows that optimal designs simultaneously delay solute transport breakthrough at pumping wells and improve the sweep efficiency leading to smaller cleanup times. Well placement optimization in heterogeneous porous media was found to be more important than well rate optimization. Additionally, optimal designs based on two-dimensional models were found to be more optimistic suggesting a direct use of three-dimensional models in a simulation-optimization framework. The computational budget was drastically reduced because the proposed surrogate-based quality management model is generally cheaper than one single solute transport simulation. The introduced model could be used as a fast, but first-order, approximation method to estimate pump-and-treat capital remediation costs. The results show that physically based low-fidelity surrogate models are promising computational approaches to harness the power of quality management models for complex applications with practical relevance.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3