Regional Flow Influenced Recirculation Zones of Pump‒and‒Treat Systems for Groundwater Remediation with One or Two Injection Wells: An Analytical Comparison

Author:

Zhang Shuai1ORCID,Wang Xu-Sheng12ORCID

Affiliation:

1. Key Laboratory of Groundwater Conservation of Ministry of Water Resources (In Preparation), China University of Geosciences, Beijing 100083, China

2. Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing 100083, China

Abstract

As a widely employed method for in situ remediation of groundwater contamination, the pump-and-treat (PAT) system involves the management of water recirculation between the extraction and injection wells. The recirculation zone (RZ) of an extraction-injection well pair in a confined aquifer has been well known. However, PAT systems are more frequently used in unconfined aquifers with a natural regional flow and may not only include one injection well. We develop comparable analytical models for an unconfined aquifer treated by two different system settings, including an extraction well and one injection well (1e/1i system) or two injection wells (1e/2i system). The role of regional groundwater flow is highlighted. Analytical solutions of RZs and recirculation ratios are obtained using complex potential functions, with a new treatment of the jump of the stream function at a branch cut. Results indicate that the shape of RZs and the recirculation ratio nonlinearly depend on several dimensionless parameters linked to the pumping rate and direction of regional flow. Compared to the 1e/1i system, the two injection wells in the 1e/2i system may reduce the integrity of RZs and decrease the recirculation ratio; however, they lead to a higher allowable pumping rate in satisfying the limitations of the water table in wells. This study suggests a useful methodology for analyzing PAT systems with multiple injection wells and provides new insights into RZs between extraction and injection wells.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3